Robust, Generalized, Quick and Efficient Agglomerative Clustering
نویسندگان
چکیده
Hierarchical approaches, which are dominated by the generic agglomerative clustering algorithm, are suitable for cases in which the count of distinct clusters in the data is not known a priori; this is not a rare case in real data. On the other hand, important problems are related to their application, such as susceptibility to errors in the initial steps that propagate all the way to the final output and high complexity. Finally, similarly to all other clustering techniques, their efficiency decreases as the dimensionality of their input increases. In this paper we propose a robust, generalized, quick and efficient extension to the generic agglomerative clustering process. Robust refers to the proposed approach’s ability to overcome the classic algorithm’s susceptibility to errors in the initial steps, generalized to its ability to simultaneously consider multiple distance metrics, quick to its suitability for application to larger datasets via the application of the computationally expensive components to only a subset of the available data samples and efficient to its ability to produce results that are comparable to those of trained classifiers, largely outperforming the generic agglomerative process.
منابع مشابه
Enhancement Clustering of Cloud Datasets using Improved Agglomerative Technique
Enhancement Clustering of Cloud Datasets using Improved Agglomerative Technique Prof. Madhuri h Parekh Smt. J.J.Kundaliya Commerce College, Rajkot, Gujarat, India. Email: [email protected] ----------------------------------------------------------------------ABSTRACT------------------------------------------------------------Cloud computing is the latest technology that delivers computing...
متن کاملRobust Hierarchical Clustering
One of the most widely used techniques for data clustering is agglomerative clustering. Such algorithms have been long used across many different fields ranging from computational biology to social sciences to computer vision in part because their output is easy to interpret. Unfortunately, it is well known, however, that many of the classic agglomerative clustering algorithms are not robust to...
متن کاملAgglomerative Info-Clustering
An agglomerative clustering of random variables is proposed, where clusters of random variables sharing the maximum amount of multivariate mutual information are merged successively to form larger clusters. Compared to the previous info-clustering algorithms, the agglomerative approach allows the computation to stop earlier when clusters of desired size and accuracy are obtained. An efficient a...
متن کاملEfficient Clustering and Matching for Object Class Recognition
In this paper we address the problem of building object class representations based on local features and fast matching in a large database. We propose an efficient algorithm for hierarchical agglomerative clustering. We examine different agglomerative and partitional clustering strategies and compare the quality of obtained clusters. Our combination of partitional-agglomerative clustering give...
متن کاملDivisive Hierarchical Clustering with K-means and Agglomerative Hierarchical Clustering
To implement divisive hierarchical clustering algorithm with K-means and to apply Agglomerative Hierarchical Clustering on the resultant data in data mining where efficient and accurate result. In Hierarchical Clustering by finding the initial k centroids in a fixed manner instead of randomly choosing them. In which k centroids are chosen by dividing the one dimensional data of a particular clu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004